PRODUCTOS

Las bombas neumáticas de doble membrana son reconocidas como las bombas más flexibles para el tratamiento de líquidos agresivos con presión y caudales variables. La gama de aplicaciones es prácticamente ilimitada. Las bombas Meclube AODD se fabrican en varios tamaños, con una amplia gama de materiales de fabricación a disposición. Casi todos los tipos de líquido, desde los altamente ácidos y corrosivos, pasando por las pinturas, adhesivos de alta viscosidad, hasta los productos alimentarios, pueden ser bombeados.

Bombas neumáticas de doble membrana hechas de POLIPROPILENO Caudales de 8 l/min a 700 l/min Conexiones de 1/4" a 2"

Bombas neumáticas de doble membrana hechas de **ALUMINIO** Caudales de 55 I/min a 700 I/min Conexiones de 1/2" a 2"

Bombas neumáticas de doble membrana hechas de ACERO INOX. AISI 316 Caudales de 20 I/min a 700 I/min Conexiones de 3/8" a 2"

Bombas neumáticas de doble membrana hechas de ACERO INOX. AISI 316 **ELECTROPULIDO**

Caudales de 20 I/min a 700 I/min Conexiones de 3/8" a 2"

BOMBA ESPECIAL ATEX Zona 1

Bombas neumáticas de doble membrana hechas de POLIPROPILENO, PVDF, ALU-MINIO, ACERO INOX, AISI 316 Caudales de 20 I/min a 700 I/min

Conexiones de 3/8" a 2"

CARACTERÍSTICAS Y VENTAJAS

Distribuidor neumático anti atascamiento y anti congelación que no necesita lubricación, este sistema garantiza una larga duración y un bajo consumo de aire.

100% probadas después del ensamblaje: vacío, cebado y estanqueidad hidrostática.

Posibilidad de tratar líquidos con sólidos: ideales para fluidos abrasivos sucios y viscosos.

Sistema neumático hecho completamente de plástico: robusto y resistente a la corrosión.

Se pueden personalizar de acuerdo con el uso específico, como conexiones múltiples y opciones de interconexiones.

Caudal, altura de elevación y presiones variables, fácil de regular sin controles sofisticados.

Autoaspirante: capacidad de aspiración en seco hasta 6 metros.

Posibilidad de trabajar completamente sumergida

de acuerdo con la compatibilidad con el fluido.

1. Aspiración

El aire comprimido llena la cámara interior de la derecha, gracias al movimiento de la membrana opuesta y levantando la bola de la válvula inferior, crea la aspiración del líquido de entrada. Simultáneamente la cámara de la izquierda se encuentra en ciclo de "descarga".

2. Impulsión

El aire comprimido llena la cámara interior

de la izquierda, descarga el fluido en la cámara opuesta levantando la bomba de la válvula superior.

Simultáneamente, la cámara de la izquierda se encuentra en ciclo de "aspiración".

SELECCIÓN DE LA BOMBA

Selección de la bomba

Para seleccionar la bomba MECLUBE correcta de acuerdo con el uso, se deben tener en cuenta los siguientes factores para optimizar los rendimientos, prolongar la vida útil de la bomba y minimizar los costes de mantenimiento:

- el tipo de fluido a bombear, su viscosidad y los sólidos contenidos
- capacidad de bombeo de acuerdo con el caudal deseado
- las condiciones de aspiración y de presión

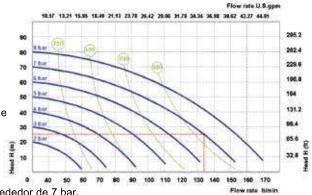
Teniendo en cuenta estos parámetros, se selecciona un tamaño ideal de la bomba cuando la intersección entre la "presión contra caudal" del punto de funcionamiento previsto está cerca de la sección central de la curva.

Posibilidades de conexión

NBR

Estándar = AB

Entrada = \triangle -F-T-C-G


Salida = B-S-D-F-P							
CUERPO	MEMBRANAS	BOLAS	ASIENTO BOLA	JUNTAS	CONEXIONES	ATEX	PUERTAS
POLIPROPILENO	HYTREL+PTFE	PTFE	PP	EPDM	BSP	ZONA2	A B= ESTÁNDAR
PVDF	SANTOPRENO+PTFE	ss	PVDF	VITON	FLANGED	ZONA1	
ALUMINIO	HYTREL	EPDM	ALU	NBR	NPT	•	
ACERO INOX.	: : SANTOPRENO-EPDM	NBR	: : SS-PE-UHMWE	:	•	•	:

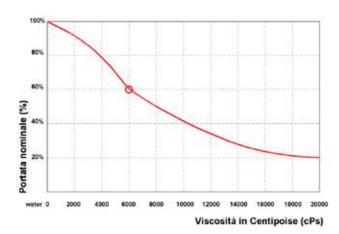
Para determinar el aire comprimido necesario y el tamaño adecuado de una bomba MECLUBE se necesitan dos informaciones:

- 1 Caudal del fluido requerido
- 2 Altura de elevación total

Como ejemplo, consideremos una curva de rendimiento de la bomba P160, que bombea aproximadamente 135 l/min a 25 m.

El punto A de la curva es donde se cruzan los puntos de caudal y altura. Este punto determina la cantidad de aire comprimido que se necesita para que la bomba funcione correctamente.

En el punto A, la bomba necesitará una presión de alimentación del aire de alrededor de 7 bar.


Para llegar a este cálculo, siga la curva azul de la izquierda para leer la presión del aire en BAR. Observando la curva verde más cercana, se determina que la bomba necesitará alrededor de 900 nl/min (Normal litros por minuto) de consumo de aire.

Especificaciones capacidad de

Con una altura de aspiración de 4 m, la bomba disminuye el caudal en alrededor del 20%. Válido para bombas de 3/4" y más grandes; los datos varían dependiendo de la configuración de la bomba.

Rendimientos con líquidos viscosos

Durante el bombeo de un fluido con una viscosidad de 6000cPs, la capacidad de la bomba se reduce al 60% de su valor nominal (100% = agua). Válido para las bombas de ¾" y más grandes.

Los datos técnicos son indicativos y no son vinculantes para el fabricante, quien se reserva el derecho a modificarlos en cualquier momento sin aviso previo.

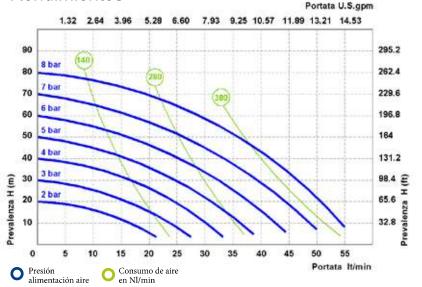
BOMBAS NEUMÁTICAS DE DOBLE MEMBRANA

Meclube Modelo P55

de POLIPROPILENO

Relación de compresión: 1:1

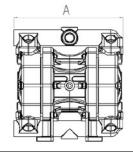
Caudal máximo: 55 l/min Conexión fluidos: 1/2" BSP

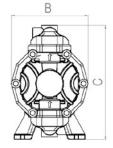

⊳ EX II 3/3 GD c IIB T 135°C ATEX zona 2

ARTÍCULO	CUERPO	MEMBRANAS	BOLAS	JUNTAS	FLUIDOS
028-P055-AB1	POLIPROPILENO	HYTREL+PTFE	SS AISI 316	NBR	ACEITES-ACEITES USADOS-GASOIL
028-P055-AB2	POLIPROPILENO	HYTREL+PTFE	PTFE	VITON	: AGUA-LÍQUIDO ANTICONGELANTE- : LIMPIAPARABRISAS-UREA - Ad Blue
028-P055-AB3	POLIPROPILENO	HYTREL+PTFE	PTFE	PTFE	LÍQUIDOS AGRESIVOS (ÁCIDOS Y BÁSICOS)
028-P055-AB4	POLIPROPILENO	SANTOPRENE	EPDM	EPDM	LÍQUIDOS ABRASIVOS - ALCALINOS/ BÁSICOS VÉASE LA LISTA DE MATERIALES ADJUNTA (pág. 43)

Datos técnicos

Conexiones fluidos: 1/2" BSP Conexión aire: 1/4" BSP Caudal máximo: 55 I/min Presión máxima: 8 bar Altura de elevación máx.: 80 m Cap.máx. aspir. en seco: 6,0 m Cap. Max aspir. con fluido: 9,8 m Diámetro paso sólidos: 3,5 mm Nivel de ruido: 68 dB Caudal por ciclo: 85 cm³ Viscosidad máxima: 20000 cps


Rendimientos

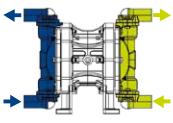


Las curvas y los rendimientos se refieren a las bombas con aspiración sumergida e impulsión con boca libre, con agua a 20 $^{\circ}$ C, y varían según el material de fabricación.

Medidas

A (mm)	222
B (mm)	156
C (mm)	233
Peso neto kg	4
Temperatura máx.	65°C
FLUIDOS	

BOMBAS NEUMÁTICAS DE DOBLE MEMBRANA



Información técnica

Las bombas DRUM PHOENIX han sido diseñadas para el vaciado de bidones y depósitos, para ofrecer una solución económica y duradera, como alternativa a otros sistemas de bombeo. Las bombas DP están disponibles en todos los materiales de fabricación con la finalidad de poderlas utilizar con una amplia gama de fluidos. Las bombas se pueden montar fácil y rápidamente en bidones gracias a los soportes antivibratorios.

El depósito se vacía completamente gracias al tubo de aspiración rígido.

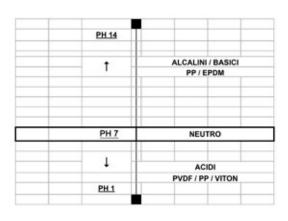
Información técnica

Las bombas TWIN PHOENIX se utilizan principalmente en las industrias textil y papelera. Estas bombas de doble acción logran transferir simultáneamente dos fluidos diferentes independientes. Todo esto se obtiene mediante el uso de conexiones de aspiración e impulsión separadas, manteniendo los dos fluidos tratados aislados entre sí, impidiendo que se mezclen.

Bombas especiales

Bomba instalada por debajo del nivel del fluido (cuando se necesita vaciar el fluido completamente)

Bomba instalada después de las tolvas para fluidos de alta viscosidad (la altura de la tolva ayuda a la bomba a desplazar el fluido. Bomba instalada después de las tolvas para fluidos de alta viscosidad (la altura de la tolva ayuda a la bomba a desplazar el fluido.


TABLA DE COMPATIBILIDAD QUÍMICA

SOSTANZA	SIGLA CHIMICA	CONC. MAX	CONFIGURAZIONE MIGLIORE	ALTRI MATERIALI COMPATIBILI	NOTE
ACETATO D'ETILE	CH3C00C2H5	TUTTE	PHTTPD	A	
ACETONE	C3H6O	TUTTE	PHTTPD	A - 5	
ACIDO ACETICO	C2H4O2	TUTTE	PHTTPD		(4)
ACIDO CIANIDRICO	HCN	TUTTE	PHTTPV		
ACIDO CLORIDRICO	HCI	TUTTE	PHTTPV	KC	
ACIDO CROMICO	H2CrO4	TUTTE	KCMTTKV	Z	
ACIDO FLUORIDRICO	HF	TUTTE	KCMTTKT	PC	NO PP perché caricato vetro
ACIDO FORMICO	CH202	TUTTE	PHTTPD	A - S - KC	2
ACIDO NITRICO	HNO3	20%	PHTTPV	S - KC - Z	
ACIDO NITRICO	HNO3	100%	KCMTTKV	S	
ACIDO SOLFORICO	HZSO4	50%	PHTTPV	KC	MOLTO DENSO
ACIDO SOLFORICO	H25O4	98%	KCMTTKV		MOLTO DENSO
ACQUA + SABBIA		TUTTE	PDDZD	A - N	NO CHIMICO - MOLTO ABRASIVO
ALCOLI (GENERICI)	CnH2n+2O	TUTTE	PHTTPD	S	
COLLA VINILICA		TUTTE	PHTSSD	A	MOLTO VISCOSA
IDROSSIDO DI SODIO	NaOH	TUTTE	PHTTPD	5	
IPOCLORITO DI SODIO	NaOCI	15%	PHTTPV		
IPOCLORITO DI SODIO	NaOCI	100%	KCMTTKV	PC	NO PP perché caricato vetro
ISOCIANATO	***	TUTTE	PTHSPV	A	MOLTO VISCOSO
LATTE DI CALCE		TUTTE	PDDZD	375.5	MOLTO ABRASIVO - ALCALINO
PEROSSIDO DI IDROGENO	H2O2	20%	PHTTPV	A - S - KC	-
PEROSSIDO DI IDROGENO	H2O2	100%	KCMTTKV	A - S	6
POLIOLO		TUTTE	PHTSPV	A	MOLTO DENSO
SOLVENTI ALOGENATI		TUTTE	KCMTTKT	***	NO ALLUMINIO
TOLUENE	C7H8	TUTTE	АНТТАТ	S - KC - Z	
TRIIDURO DI AZOTO	NH3	TUTTE	PHTTPD	S	
XILENE	C8H10	TUTTE	AHTTAT	S	

ELENCO MATERIALI

Α	→	ALLUMINIO EPDM HYTREL / KEYFLEX PVDF+CF SANTOPRENE		
D	→			
н	→			
кс	→			
м	→ [
N	→	NBR		
P	→	POLIPROPILENE		
PC	→	POLIPROPILENE + CF		
s	→	INOX AISI 316		
т	→	PTFE / TEFLON		
V	→	FPM / VITON		
Z	→	POLIETILENE / POLIZENE		

EDITION 10/2017 Foto F.IIi ZAMBRONI MADE IN ITALY